Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications.
نویسنده
چکیده
Poly(lactide)s [i.e. poly(lactic acid) (PLA)] and lactide copolymers are biodegradable, compostable, producible from renewable resources, and nontoxic to the human body and the environment. They have been used as biomedical materials for tissue regeneration, matrices for drug delivery systems, and alternatives for commercial polymeric materials to reduce the impact on the environment. Since stereocomplexation or stereocomplex formation between enantiomeric PLA, poly(L-lactide) [i.e. poly(L-lactic acid) (PLLA)] and poly(D-lactide) [i.e. poly(D-lactic acid) (PDLA)] was reported in 1987, numerous studies have been carried out with respect to the formation, structure, properties, degradation, and applications of the PLA stereocomplexes. Stereocomplexation enhances the mechanical properties, the thermal-resistance, and the hydrolysis-resistance of PLA-based materials. These improvements arise from a peculiarly strong interaction between L-lactyl unit sequences and D-lactyl unit sequences, and stereocomplexation opens a new way for the preparation of biomaterials such as hydrogels and particles for drug delivery systems. It was revealed that the crucial parameters affecting stereocomplexation are the mixing ratio and the molecular weight of L-lactyl and D-lactyl unit sequences. On the other hand, PDLA was found to form a stereocomplex with L-configured polypeptides in 2001. This kind of stereocomplexation is called "hetero-stereocomplexation" and differentiated from "homo-stereocomplexation" between L-lactyl and D-lactyl unit sequences. This paper reviews the methods for tracing PLA stereocomplexation, the methods for inducing PLA stereocompelxation, the parameters affecting PLA stereocomplexation, and the structure, properties, degradation, and applications of a variety of stereocomplexed PLA materials.
منابع مشابه
Synthesis and Thermal Properties of Novel Biodegradable ABCBA Pentablock Copolymers from Poly (Ethylene glycol), L-Lactide and p-Dioxanone
In this work, new biodegradable ABCBA type pentablock copolymers with different mole ratio of L-lactide and PPDO-b-PEG-b-PPDO triblock copolymer were synthesized and characterized. In the first step, PPDO-b-PEG-b-PPDO triblock copolymer was synthesized via a ring-opening polymerization of P-DiOxanone (PDO) monomer with Poly (Ethylene Glycol) (P...
متن کاملMechanism of the Stereocomplex Formation between Enantiomeric Poly(lactide)s
Poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) crystallize into a stereocomplex with a melting point 50 °C higher than the crystals of the enantiomers. The racemic crystal is formed by packing â-form 31-helices of opposite absolute configuration alternatingly side by side. Single crystals of the stereocomplex exhibit triangular shape. The drastic difference of the powder patterns evidences t...
متن کاملPoly (Lactic Acid)Nanofibres as Drug Delivery Systems: Opportunities and Challenges
Numerous Scientists have discovered the procedure of nanotechnology, explicitlynanofibers, asdrug delivery systems for transdermal uses. Nanofibers canbe used to deliver drugs and are capable of controlled release for a continued periodof time. Poly (Lactic Acid) (PLA) is the lastly interesting employed synthetic polymer in biomedical application owing to its well categorized biodegradable prop...
متن کاملThermal properties and morphology changes in degradation process of poly(L-lactide-co-glycolide) matrices with risperidone.
Determining thermal properties and morphology seems to be useful in the analysis of release and degradation processes form polymeric materials. Risperidone is available in the formulation of a long-acting injection based on poly(D,L-lactide-co-glycolide). Currently, alternative solutions are also offered, i.e., nano- and microparticles or implants, including copolymers of lactide and glycolide....
متن کاملStudies on Preparation of Poly(3,4-Dihydroxyphenylalanine)-Polylactide Copolymers and the Effect of the Structure of the Copolymers on Their Properties
Properties of copolymers are generally influenced by the structure of the monomers and polymers. For the purpose of understanding the effect of polymer structure on the properties, two kinds of copolymers, poly(3,4-dihydroxyphenylalanine)-g-polylactide and poly(3,4-dihydroxyphenylalanine)-b-polylactide (PDOPA-g-PLA and PDOPA-b-PLA) were designed and prepared by ring-opening polymerization of la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Macromolecular bioscience
دوره 5 7 شماره
صفحات -
تاریخ انتشار 2005